IPY: Flow Dynamics of Two Amundsen Sea Glaciers: Thwaites and Pine Island

S Anandakrishnan 1 , AM Smith 2 , RB Alley 1 , D Pollard 1 , and W Carlsen 1

¹Dept. of Geosciences and EESI Pennsylvania State University

²British Antarctic Survey

International Polar Year RFP, May 2006

IPY Guidelines

- IPY Guideline: Our proposal
- Ice Sheet History and Dynamics: Dynamics of Thwaites and Pine Island, two glaciers with large, recent changes.
- International: significant collaboration with BAS.
- "...engage the public": audio and video podcasts starring me and many folks from WAIS.

Science Justification: Characterize the Basal Boundary of Amundsen Sea Part of WAIS

- Marine ice sheets are inherently unstable (Weertman, 1974; Thomas and Bentley, 1978, Schoof, 2006)
- Glaciers terminating on the seaward side of a sill are conditionally stable...
- Glaciers terminating on the landward side of a sill are unconditionally unstable...
- ...Thwaites Glacier has a 50km sill.
- What are the properties of that sill; how quickly could Thwaites retreat; how far back could Thwaites retreat?

Marine Ice Sheet & Thwaites/PI Cartoon

Science Justification: Characterize the Basal Boundary of Amundsen Sea Part of WAIS

- The basal boundary is critical in developing predictive models.
- We propose: reflection seismic imaging, GPS flow, and passive seismics experiments.
- We propose: these data flow into ice-sheet modeling of ocean-terminating glaciers (tuned to Thwaites and Pine Island).

Thwaites and Pine Island: Terry's Weak Underbelly

- Small ice shelves buttress them.
- Ready access to warm ocean waters.
- Overdeepened basins.
- Thawed, relatively smooth beds.
- Except for possibly frozen to grounding zone sill.

AGASEA Project

Proposed Work: Characterize The Bed

- Bed of Thwaites matters:
 - Siple Coast ice streams so well lubricated, side drag very important.
 - Large outlet glaciers (including Rutford) are "narrow" and deep: sides very important.
 - Thwaites bed might dominate.
- Shallow sill matters: bed may be frozen, and stability of Thwaites depends on which side of sill it grounds on.

Proposed Work: Seismics

- Best way to characterize bed details: high resolution reflection seismic imaging.
- Profiles on sill (if possible) and in the main glacier body.
- AM Smith will carry out work on Pine Island, PSU will carry out work on Thwaites.
- Compare/contrast two glaciers... (and share resources as appropriate)

Proposed Work: GPS and Ice/Earthquakes

- Best way to characterize bed average properties: GPS response to tidal forcing.
- Tides impose forces that are seen well upstream: infer average bed properties from these data.
- Passive Seismics Glacial earthquakes can be detected at great distances.
- Microearthquake arrays can monitor large parts of the bed.

Proposed Work: Modeling

- Combined flow model of Pollard, includes shelf and sheet flow.
- Tests of increased ocean-warming-induced ice shelf melt.
- Our field data will allow for better constraints of model outputs.

Outreach

- Pod- and vod-casting: audio and video content in near real time.
- Bill Carlsen (Science Ed. expert) & Cynthia Berger (Science reporter for NPR affiliate)
- Dissemination on web and Weather Channel.
- Weekly "episodes" that trace an arc through polar science:
 - Coring & paleoclimate
 - Geophysics
 - Geology
 - Oceanography
 - Modeling
- End with off-Antarctic trip: sea level impacts on low-latitude people (Florida & Madras, India)

